

VIVEKANANDA STUDY CENTRE (PUBLIC SERVICES)

Sponsored by "Vivekananda Vidyavardhaka Sangha Puttur®"

"Narendra" Vivekananda Campus, P.o. Nehru Nagara, Puttur D.K -574203 Website: yashas.vivekanandaedu.org, email id: vvsputtur@gmail.com

MODEL QUESTION PAPER FOR ENTRANCE EXAM TO BE HELD ON 25-12-2014

1.	Which is the heavi	est element in Density?					
	(a) Platinum	(b) Rhenium	(c) Uranium	(d) Osmium			
2.	Lightest element fr	rom the following is?					
	(a) Potassium	(b) Calcium	(c) Lithium (d) Ce	sium			
3.	Which is the larges	st planetary satellite?					
	(a) Titan	(b) Europa	(c) Ganymede (d) Oberon			
4.	Brightest star is						
	(a) Sirius	(b) Procyon	(c) Rigel	(d) Vega			
5.	The first woman to	o orbit earth is					
	(a) Laika	(b) Valentina Teresh	nkova (c) Enos	(d) Angelo Heriquez			
6.	The Coldest place of	on earth is					
	(a) Oymyakon	(b) Anzhi	(c) Terek	(d) Kiev			
7.	The worst forest f	ive Occurred at					
	(a) Cloquet	(b) Victoria	(c) Landes	(d) Ontario			
8.	The Country with	the most mammal spec	cies is				
	(a) China	(b) India	(c) Indonesia	(d) Colombia			
9.	The sleepiest mammal is						
	(a) OPossum	(b) Koala	(c) Big brown bat	(d) Three – toed sloth			
10.	Which of the follow	wing fish is fatest one?					
	(a) Sail fish	(b) Bhee shark	(c) Wahoo	(d) Tarpon			
11.	The bird with large	est wing is					
	(a) Albetross	(b) Sarus crane (c) G	Freat white pelecon	(d) Lammergeier			
12.	Longest snake is						
	(a) Anaconda	(b) Diamond Pythor	n (c) Indian Python	(d) Royal Python			
13.	Which of the follow	wing is most venomous	s snake?				
	(a) Krait	(b) Taipon	(c) Indian Cobra	(d) Mamba			
14.	Who won the first	grand prix (Motor racin	ng)				
	(a) Ferenc Scisz	(b) Lukasz Piszszek	(c) Clerge	(d) William Marshal			

15.	15. The red colour of ruby laser is due to which atom?							
	(a) Aluminium	(b) (Oxygen	(c) Silicon	(d) Cromium			
16.	Which of the follow	ing el	lement is useful ir	n preparing atom bo	mb?			
	(a) Uranium	(b) (Coal	(c) Petrol	(d) Spirit			
17.	Which of the follow	ing n	umbers is a perfec	ct square?				
	(a) 548543213	(b) 5	548543217	(c) 548543250	(d) 548543241			
18.	The product of two	numb	bers is 24 then the	minimum sum of su	ach numbers is			
	(a) 8	(b) 9	9	(c) 10	(d) 12			
19.	Value of 0.001 + 1.0	1 + 0.1	11 is					
	(a) 1.013	(b) 1	1.121	(c) 1.101	(d) 1.111			
20.	If in a triangle PQR	, PQ=4	4cm, PR=6cm, and	d QR=3cm then whi	ch of the following is			
	true?							
	(a) $\angle R > \angle Q$	(b) A	$\angle Q > \angle R$	(c) $\angle Q = \angle R$	(d) $\angle R < \angle P$			
21.	The cost price of 10	candl	les is equal to the	selling price of 8 can	dles. What is the			
	Percentage of		-					
	D (11 / I 0							
	Profit / Loss?	(1)	200/	(c) 23%	(1) 200/			
22	(a) 25%	(b) 2			(d) 30%			
22.	The capacity of an u	altrasc	ound apparatus is					
	/ \ T 41 00 TT	/1 \ T	D . OO II 0	200000TT /\2000TT	(1) (1)			
	• •	z(b) I	Between 20 Hz &	200000Hz (c) 2000H	z (d) Greater than			
22	20000Hz			200000Hz (c) 2000H	z (d) Greater than			
23.	20000Hz The roots of the equ	ıation	$3x^2 + 9x + 12$ are					
	20000Hz The roots of the equ (a) Real	uation (b) I	3x ² + 9x+12 are Imaginary	(c) Real & Equal	z (d) Greater than (d) 0			
	20000Hz The roots of the equ (a) Real If the number 197*	ation (b) I	.3x²+9x+12 are Imaginary s divisible by 9 the	(c) Real & Equal en * is equal to	(d) 0			
24.	20000Hz The roots of the equ (a) Real If the number 197*; (a) 7	ation (b) I 5462 is (b) 1	3x ² + 9x+12 are Imaginary s divisible by 9 the	(c) Real & Equal en * is equal to (c) 2				
24.	20000Hz The roots of the equal (a) Real If the number 197*; (a) 7 Which of the follow	uation (b) I 5462 is (b) I	. 3x ² + 9x+12 are Imaginary s divisible by 9 the 1 s a factor of x ¹⁴ -169	(c) Real & Equal en * is equal to (c) 2	(d) 0 (d) 4			
24.25.	20000Hz The roots of the equal (a) Real If the number 197*, (a) 7 Which of the follow (a) x+2	1ation (b) I 5462 is (b) 1 7ing is (b) x	. 3x ² + 9x+12 are Imaginary s divisible by 9 the 1 s a factor of x ¹⁴ -169 c+4	(c) Real & Equal en * is equal to (c) 2 ? (c) x-4	(d) 0			
24.25.	20000Hz The roots of the equal (a) Real If the number 197*s (a) 7 Which of the follow (a) x+2 If P=X, Q=+, R=- Ar	(b) 15462 is (b) 17ing is (b) x and S=	3x ² + 9x+12 are Imaginary s divisible by 9 the 1 s a factor of x ¹⁴ -16 c+4 =÷ then 10P3, Q18,	(c) Real & Equal en * is equal to (c) 2? (c) x-4 .R24,S3 is	(d) 0 (d) 4 (d) x+6			
24.25.26.	20000Hz The roots of the equal (a) Real If the number 197*; (a) 7 Which of the follow (a) x+2 If P=X, Q=+, R=- Ar (a) 52	(b) 1 (5462 is (b) 1 ving is (b) x nd S=	3x ² + 9x+12 are Imaginary s divisible by 9 the 1 s a factor of x ¹⁴ -169 x+4 =÷ then 10P3, Q18,	(c) Real & Equal en * is equal to (c) 2 ? (c) x-4	(d) 0 (d) 4			
24.25.26.	20000Hz The roots of the equal (a) Real If the number 197*s (a) 7 Which of the follow (a) x+2 If P=X, Q=+, R=- Ar	(b) 1 (5462 is (b) 1 ving is (b) x nd S=	3x ² + 9x+12 are Imaginary s divisible by 9 the 1 s a factor of x ¹⁴ -169 x+4 =÷ then 10P3, Q18,	(c) Real & Equal en * is equal to (c) 2? (c) x-4 .R24,S3 is	(d) 0 (d) 4 (d) x+6			
24.25.26.	20000Hz The roots of the equal (a) Real If the number 197* (a) 7 Which of the follow (a) x+2 If P=X, Q=+, R=- Ar (a) 52 The Simplest value	(b) 1 (5462 is (b) 1 ving is (b) x nd S=	$3x^{2}+9x+12 \text{ are}$ Imaginary s divisible by 9 the 1 s a factor of $x^{14}-163$ $x+4$ \Rightarrow then 10P3, Q18, $\frac{\sqrt{3}}{\sqrt{3}}-\frac{2+\sqrt{3}}{2-\sqrt{3}}$ is	(c) Real & Equal en * is equal to (c) 2? (c) x-4 .R24,S3 is	(d) 0 (d) 4 (d) x+6			
24.25.26.27.	20000Hz The roots of the equal (a) Real If the number 197*s (a) 7 Which of the follow (a) x+2 If P=X, Q=+, R=- As (a) 52 The Simplest value	tation (b) I 5462 is (b) I ving is (b) x nd S= (b) 4 $\text{of } \frac{2-\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+2}}}}}{2+\sqrt{2+\sqrt{2+2}}}$	$3x^2 + 9x + 12$ are Imaginary s divisible by 9 the 1 s a factor of x^{14} -16% $x+4$ = \div then 10P3, Q18, $\frac{\sqrt{3}}{\sqrt{3}} - \frac{2+\sqrt{3}}{2-\sqrt{3}}$ is $-8\sqrt{3}$	(c) Real & Equal en * is equal to (c) 2? (c) x-4 LR24,S3 is (c) 46	(d) 0 (d) 4 (d) x+6 (d) 40			
24.25.26.27.	20000Hz The roots of the equal (a) Real If the number 197*3 (a) 7 Which of the follow (a) $x+2$ If $P=X$, $Q=+$, $R=-A$ (a) 52 The Simplest value (a) $8\sqrt{3}$	tation (b) I 5462 is (b) I ving is (b) x nd S= (b) 4 $\text{of } \frac{2-\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+2}}}}}{2+\sqrt{2+\sqrt{2+2}}}$	$3x^2+9x+12$ are Imaginary s divisible by 9 the 1 s a factor of $x^{14}-16$ s + then 10P3, Q18, 48 $\frac{\sqrt{3}}{\sqrt{3}} - \frac{2+\sqrt{3}}{2-\sqrt{3}}$ is $-8\sqrt{3}$ et is largest?	(c) Real & Equal en * is equal to (c) 2? (c) x-4 LR24,S3 is (c) 46	(d) 0 (d) 4 (d) x+6 (d) 40			
24.25.26.27.28.	20000Hz The roots of the equal (a) Real If the number 197* (a) 7 Which of the follow (a) $x+2$ If $P=X$, $Q=+$, $R=-$ Ar (a) 52 The Simplest value (a) $8\sqrt{3}$ Which of the follow (a) Z	tation (b) I 5462 is (b) I 7ing is (b) $x \text{ of } \frac{2-\sqrt{y}}{2+\sqrt{y}}$ (b) I 7 ing se (b) (c)	Imaginary s divisible by 9 the s a factor of x^{14} -166 $x+4$ $x+$	(c) Real & Equal en * is equal to (c) 2 ? (c) x-4 .R24,S3 is (c) 46 (c) 12√3	(d) 0 (d) 4 (d) $x+6$ (d) 40 (d) $-4\sqrt{3}$ (d) R			
24.25.26.27.28.	20000Hz The roots of the equal (a) Real If the number 197* (a) 7 Which of the follow (a) $x+2$ If $P=X$, $Q=+$, $R=-$ Ar (a) 52 The Simplest value (a) $8\sqrt{3}$ Which of the follow (a) Z	tation (b) I 5462 is (b) I 7ing is (b) $x \text{ of } \frac{2-\sqrt{y}}{2+\sqrt{y}}$ (b) I 7 ing se (b) (c)	Imaginary s divisible by 9 the s a factor of x^{14} -169 $x+4$ $=\div$ then 10P3, Q18, $x+4$ $=\div$ then 10P3, $x+4$ $=\div$ then 10P3	(c) Real & Equal en * is equal to (c) 2 ? (c) x-4 .R24,S3 is (c) 46 (c) 12√3 (c) C	(d) 0 (d) 4 (d) $x+6$ (d) 40 (d) $-4\sqrt{3}$ (d) R			
24.25.26.27.28.29.	20000Hz The roots of the equal (a) Real If the number 197*3 (a) 7 Which of the follow (a) $x+2$ If $P=X$, $Q=+$, $R=-A$ (a) 52 The Simplest value (a) $8\sqrt{3}$ Which of the follow (a) Z If AD is the angular	1ation (b) I 5462 is (b) 1 7ing is (b) x of $\frac{2-\sqrt{2+\sqrt{2+\sqrt{2+2}}}}{2+\sqrt{2+2}}$ (b) x (c) x to bisec (b) x	Imaginary	(c) Real & Equal en * is equal to (c) 2 ? (c) x-4 .R24,S3 is (c) 46 (c) 12√3 (c) C then it divides BC in (c) b:a	(d) 0 (d) 4 (d) 4 (d) $x+6$ (d) 40 (d) $-4\sqrt{3}$ (d) R (e) the ratio			
24.25.26.27.28.29.	20000Hz The roots of the equal (a) Real If the number 197*3 (a) 7 Which of the follow (a) $x+2$ If $P=X$, $Q=+$, $R=-$ And (a) 52 The Simplest value (a) $8\sqrt{3}$ Which of the follow (a) Z If AD is the angular (a) a:b	1ation (b) I 5462 is (b) 1 7ing is (b) x of $\frac{2-\sqrt{2+\sqrt{2+\sqrt{2+2}}}}{2+\sqrt{2+2}}$ (b) x (c) x to bisec (b) x	Imaginary s divisible by 9 the s a factor of x^{14} -166 $x+4$	(c) Real & Equal en * is equal to (c) 2 ? (c) x-4 .R24,S3 is (c) 46 (c) 12√3 (c) C then it divides BC in (c) b:a	(d) 0 (d) 4 (d) 4 (d) $x+6$ (d) 40 (d) $-4\sqrt{3}$ (d) R (e) the ratio			

31. Which of the follo	wing is a prime num	ber?					
(a) 49	(b) 51	(c) 53	(d) 63				
32. Who discovered electro magnetic theory?							
(a) Maxwell	(b) Newton	(c) Einstein	(d) J C Bose				
33. National fruit of I	ndia is						
(a) Banana	(b) Mango	(c) Guava	(d) Orange				
34. At 2:15 0'clock, th	ne angle between hou	r hand and minute l	nand of a clock is				
(a) 30°	(b) 5^0	(c)22:50	(d) 28°				
35. A can do a piece o	of work in 9 days. B is	s 50% more efficient	than A. The number of				
days it takes B to	do the same work is						
(a) $4^{1}/_{2}$	(b) $13^{1}/_{2}$	(c) 3	(d) 6				
_	_	store it to former val	lue, the new price must be				
increased by			O				
(a) 10%	(b) 11.5%	(c) 9%	(d) 11 ¹ / ₀ %				
			le for all possible integral				
value of n is	er by which the expre		ie for all possible integral				
(a) 3	(b) 2	(c) 6	(d) 5				
\ /	` '		n of a party. Assuming				
			ers, the number of people				
present was	, i ii i i i i j i	0					
(a) 8	(b) 7	(c) 56	(d) 28				
` '	` '	· /	rease in surface area of				
the cube is		•					
(a) 50	(b) 125	(c) 150	(d) 750				
40. Let the roots of x^2	-3x+1=0 be m and n.	` '	$^{2}+n^{2}$ is				
(a) Positive Integ	ger (b) A positive fra	ction	(c) An irrational				
number	(d) An imaginary	number					
41. The base of a triar	ngle is 80° , and one of	the base angle is 60	0. The sum of the lengths				
	ides is 90° . The short						
(a) 40	(b) 17	(c) 12	(d) 45				
42. If $9^{x+2} = 240 + 9^x$ the	en x is equal to						
(a) 0.1	(b) 0.2	(c) 0.5	(d) 0.3				
43. If $\sqrt{x-1} - \sqrt{x+1}$	+ 1=0, then 4 x=						
(a) 5	(b) $4\sqrt{-1}$	(c) 0	(d) $1^{1}/_{2}$				
44. Cockroach has de	veloped special orga	ns to dispose the wa	· · · · · · · · · · · · · · · · · · ·				
(a) Medulla	(b) Cortex	-	n tubules (d) urethra				

45. The k	idneys of a dead	pers	on should be tra	nspl	anted within		hours
(a)	12	(b)	36	(c)	18	(d)	24
(b))						
46. Th	ne speed of light i	s					
	$2 \times 10^8 \text{m/sec}$		$4 \times 10^8 \text{m/sec}$	(c)	$3 \times 10^6 \text{m/sec}$	(d)	$3 \times 10^8 \text{m/sec}$
	bile and satellite						
	radio		gamma				none of these
48. X-ray	s were discovered	d by					
(a)	Henry Becquer	el		(b)	Roentgen	(c)	Ritter
d)	Rudolf Hertz						
49. Which	n of these is India	's fir	st super comput	er?			
(a)	Param-7000	(b)	Saga-220	(c)	Param-8000	(d)	K-Computer
50. LCD s	stands for						
(a)	Local crystal D	ispla	ny	(b)	Logical Crystal	Disp	olay
(c) L	iquid Crystal Dis	play		(d)	Lateral Crystal	Disp	olay
51. The v	alue of acceleration	on d	ue to gravity at t	he e	quator is.		
	9.8m/s^2					(d)	9.78m/s^2
	elation connecting						
	$g=GM/R^2$						
				(C)	g Giviit	(4)	g Giviit
	is an acronym w			Imic	ecion of Padiatio	n	
	Light Amplific					LL	
	Light And Sim Long And Sim	_					
` ,	None of these	pie i	mussion of Radio	atioi	.1		
` '	alue of 1 KWH is	,					
	37×10^{5}		35 v 105ī	(c)	36 v 105I	(4)	38 v 105ī
` ,	ntology is the bra	` ,	•	` '	-	(4)	30 X 10 j
	fossils		plants		=	(4)	none of these
` '	ife period of Radi		-	(C)	priotosynthesis	(4)	none of these
	28 years		1620 years	(c)	5 3vears	(4)	3 8years
` '	ding to Kapler's		=		=		=
	the sun at		_	abc	ve in emptical c	1010	around the sun
	centre		=	(c)	focus	(d)	none of these
	fishes belong to t			(5)	10040	(4)	none of these
_	Dipnoi	_	_	(c)	Onychophora	(4)	none of these
(4)		(\mathcal{O})	1 II Chacopier y x	(-)	on, chophora	(4)	none of these

59. The mean of first six even natural numbers is						
(a) 8	(b)	7	(c)	5	(d)	10
60. On selling a watch for `720, Ravi loses 10% At what price should he sell it, in order to gain 15%?						
(a) `840	(b)	` 920	(c)	`100	(d)	` 900
61. Which of the following	g is F	Hardy-Ramanuja	ın nı	ımber ?		
(a) 1829	(b)	1792	(c)	1729	(d)	1279
62. The cube root of -1757	6 is					
(a) -24	(b)	-36	(c)	-46	(d)	-26
63. A sum at a simple inte	erest	of 12.5% amour	its to	o ` 2502.50 after 3	3 yea	rs. Then the sum
is						
(a) 6820	(b)	1820	(c)	4820	(d)	5820
64. If the marks scored by	у На	ri in 7 tests are	24, 2	23, 22, 23 <mark>, 25,</mark> 26	, 27,	then his average
score is,						
(a) 24.29			(c)	26.45	(d)	27.29
65. If $x + \frac{1}{\chi} = 3$ then, $x^3 +$	$^{1}/_{\chi^{3}}$	=?				
(a) 16	(b)	17	(c)	13	(d)	18
66. If the perimeter of a tr	riang	le is 14 cm and	the s	sides are $x + 4$, 3	x + 1	1 and 4x + 1 then
its sides are,						
(a) 6,4,4	(b)	11,2,1	(c)	5,4,5	(d)	5,3,6
67. The length, breadth an	id he	ight of a cubiod	are	in the ratio of 6:	5:3 I	f the total surface
area is 504 cm ² then its	s vol	ume is,				
(a) 750 cm^2	(b)	710 cm ²	(c)	620 cm^2	(d)	720 cm^2
68. Rama's age is 6 times	Lak	shman's age. Af	fter 1	15 years, Rama y	will 1	be 3 times old as
Laksman. Then their a	ges a	are (in years)				
(a) 60 and 10	(b)	30 and 5	(c)	18 and 3	(d)	24 and 4
69. The diameter of a cone	e is 1	0 cm and height	is 12	2 cm. Then its to	tal sı	ırface area is,
(a) 280.85 cm^2	(b)	282.85 cm ²	(c)	283.85 cm ²	(d)	284.85 cm ²
70. The surface area of a s	pher	e is 36π cm ²				
(a) $72\pi \text{ cm}^3$	(b)	$360\pi~\mathrm{cm}^3$	(c)	$36\pi \text{ cm}^3$	(d)	$76\pi \text{ cm}^3$
71. The value of $\frac{\sqrt{2}}{\sqrt{3}-\sqrt{2}} + \frac{1}{\sqrt{3}}$	$\frac{\sqrt{3}}{3+\sqrt{2}}$ j	S				
(a) 10	` /		(c)		(d)	
72. How many 2 digit nur			usin	ng digits 1,2,3,4,5	with	nout repetitions?
(a) 20	(b)	30	(c)	120	(d)	100
73. If ${}^{n}P_{r} = 360$ and ${}^{n}C_{r} = 1$	5 the	n r=?				
(a) 6	(b)	8	(c)	4	(d)	10

74. Chemical formula of Baking Soda is						
(a) Na_2Co_3 (b) Na_3Co_3	(c) NaCo ₃ (d) Na ₄ Co ₃					
75. A concave lens of 20 cm focal length form	s an image 15 cm from the lens. Then the					
object distance is						
(a) 16 cm (b) -60 cm	(c) -40 cm (d) -80 cm					
76. Chemical formula of Plaster of Paris is,						
(a) $CaCo_3 - \frac{1}{2}H_2O(b)$ $CaCo_4 \cdot \frac{1}{2}H_2O(b)$	₂ O(c) CaSo ₄ . 2 H ₂ O (d) none of these					
77. Which of the following is a phosphatic fert:						
(a) Urea	(b) Ammonium sulphate					
(c) Super phosphate	(d) Ammonium Carbonate					
78. Gestation period of cat is,						
	(c) 66 days (d) 64 days					
79. World's first test tube baby was born on,	() I 1 25 1077 (1) I 25 1077					
(a)June 25, 1978 (b) July 25, 1978	(c) July 25, 1977 (d) June 25, 1977					
80. The electronic configuration of Sodium is,	(a) 1,22,22,26					
(a) $1s^22s^22p^63s^1$ (b) $1s^22s^22p^63s^13p^2$	(c) $1s^22s^22p^6$					
(d) none of these						
81. What must be subtracted from 6x4+13	$3x^3+13x^2+30x+20$ so that the resulting					
polynominal is exactly divisible by 3x ² +2x+	+5 ?					
(a) 2x+15 (b) 3x+15	(c) 7x+15 (d) 17x+25					
82. Value of the expression $\frac{4sin^260-cos^245'}{tan^230'+sin^20}$ is						
	17.					
(a) $\frac{15}{2}$ (b) $\frac{13}{2}$	(c) $1/\sqrt{2}$ (d) $19/\sqrt{2}$					
83. A line joining (1,0) and (4,7) is perpendicul	ar to line joining (9,a) with (-2,-1). Then 'a'					
is equal to						
(a) $41/_7$ (b) $-51/_7$	(c) $\frac{71}{7}$ (d) $\frac{61}{7}$					
84. Hallikar is an example for breed	[
(a) Cross (b) Exotic	(c) Indigenous (d) Hyper					
85. Molecualr formula of pentane?						
(a) C_4H_{10} (b) C_5H_{12}	(c) C_2H_4 (d) C_3H_3					
86. Which of the following is an aromatic hydr	cocarbon ?					
(a) Napthalene (b) Ethyne	(c) Ethane (d) Butyne					
87. Molecualr formula of Stearic Acid is						
(a) $C_6H_{15}CooH$ (b) $C_{17}H_{13}CooH(c)$) $C_{17}H_{15}CooH$ (d) $C_{17}H_{35}CooH$					
88. The vegetable that contains more sucrose is	S					
(a) Beetroot (b) Raddish	(c) Potato (d) Green leaves					

89. The fermented matter of molasses is called								
	(a) Wart	(b) p	orecipitate (c)	bag	asse	(d) raw material		
90. Ho	ow many amperes	of curi	rent is required	d to	deposit on cat	hode 5g of gold per		
hour? If the E.C.E of the gold is 0.00681 g/coulomb								
	(a) 2.4	(b) 2.	46	(c)	2.06	(d) 2.04		
91. From Faraday's first law of electrolysis we have,								
	(a) $m = ZQ$	(b) m	$n = \frac{Z}{Q}$	(c)	$m = Z^Q$	(d)none of these		
92. Th	e theory of dissociat			-				
	(a) Arrhenius	(b) (C.V.Raman	(c)	Newton	(d) Einstein		
93. W	hich of the following	g is kno	own as 'Marsh'	gas	s?			
	(a) Ethane	(b) N	/Iethane	(c)	Ethene	(d) Methyne		
94. W	hich of the following	g is an	allotrope of car	bor	ւ?			
	(a) diamond	(b) g	gold	(c)	silver	(d) platinum		
95. W	hich type of glass is	used to	o prepare lense	s?				
	(a) Lead glass			(b)	borosilicate glas	S		
	(c) soda-lime glass	(d) s	safety glass					
96. Th	e first atomic power	statio	n in India is					
	(a) BARC	(b) T	ΓAPS	(c)	UASC	(d) MAPS		
97. W	hich of the following	g is a fu	usion bomb?					
	(a) Atom bomb			(b)	hydrogen bomb	1		
	(c) nitrogen bomb	(d) c	carbon bomb					
98 Th	1 (1) (
<i>70.</i> 11	e value of 1 Mev =							
<i>70.</i> 11	(a) 1.5×10^{-13} J	(b) 1	1.6 x 10 ⁻¹⁵ J	(c)	1.6 x 10 ⁻¹³ J	(d) 1.6 x 10 ⁻¹⁴ J		
				(c)	1.6 x 10 ⁻¹³ J	(d) 1.6×10^{-14} J		
	(a) 1.5×10^{-13} J		n is	(c) (c)		(d) 1.6 x 10⁻¹⁴J(d) 19		
	(a) 1.5 x 10 ⁻¹³ J ne atomic number of (a) 16	silicon (b) 1	n is 14	(c)	18			
99. Th	(a) 1.5 x 10 ⁻¹³ J ne atomic number of (a) 16	silicon (b) 1 ighs 20	n is 14	(c)	18	(d) 19		
99. Th	(a) 1.5 x 10 ⁻¹³ J ne atomic number of (a) 16 A bag of rice wei	silicon (b) 1 ighs 20	n is 14 00kg. To what	(c) t he	18	(d) 19		
99. Th	(a) 1.5 x 10 ⁻¹³ J se atomic number of (a) 16 A bag of rice weitential energy is 980	silicon (b) 1 ighs 20 0J? (b) 4	n is 14 00kg. To what m	(c) t he (c)	18 eight it would b	(d) 19 be raised so that its		
99. Th 100.	(a) 1.5 x 10 ⁻¹³ J the atomic number of (a) 16 A bag of rice weightential energy is 980 (a) 6m	silicon (b) 1 ighs 20 0J? (b) 4 l prize	n is 14 00kg. To what m	(c) t he (c) ng an	18 eight it would b	(d) 19 be raised so that its		
99. Th 100.	(a) 1.5 x 10 ⁻¹³ J the atomic number of (a) 16 A bag of rice were stential energy is 980 (a) 6m Who won the nobe	silicon (b) 1 ighs 20 0J? (b) 4 l prize (b) I	n is 14 00kg. To what m for synthesizin Hardy	(c) t he (c) ng an	18 eight it would b 5m mmonia?	(d) 19 see raised so that its (d) 7m		
99. Th 100. po 101.	(a) 1.5 x 10 ⁻¹³ J the atomic number of (a) 16 A bag of rice weightential energy is 980 (a) 6m Who won the nobel (a) Newton	silicon (b) 1 ighs 20 0J? (b) 4 l prize (b) I	n is 14 00kg. To what m for synthesizin Hardy is	(c) t he (c) ng an (c)	18 eight it would b 5m mmonia?	(d) 19 see raised so that its (d) 7m		
99. Th 100. po 101.	(a) 1.5 x 10 ⁻¹³ J the atomic number of (a) 16 A bag of rice weightential energy is 980 (a) 6m Who won the nobel (a) Newton Boiling point of me	silicon (b) 1 ighs 20 0J? (b) 4 l prize (b) I rcury i (b) 3	n is 14 00kg. To what m for synthesizin Hardy is 57°C	(c) t he (c) ng an (c)	18 eight it would b 5m mmonia? Harbour	(d) 19 pe raised so that its (d) 7m (d) Haber		
99. Th 100. po 101. 102.	(a) 1.5 x 10 ⁻¹³ J are atomic number of (a) 16 A bag of rice we stential energy is 980 (a) 6m Who won the nobe (a) Newton Boiling point of me (a) 2600°C	silicon (b) 1 ighs 20 0J? (b) 4: l prize (b) I rcury i (b) 30 pper is	n is 14 00kg. To what m for synthesizin Hardy is 57°C	(c) t he (c) ng at (c)	18 eight it would b 5m mmonia? Harbour	(d) 19 pe raised so that its (d) 7m (d) Haber		
99. Th 100. po 101. 102.	(a) 1.5 x 10 ⁻¹³ J the atomic number of (a) 16 A bag of rice weightential energy is 980 (a) 6m Who won the nobel (a) Newton Boiling point of me (a) 2600°C Melting point of co	silicon (b) 1 ighs 20 0J? (b) 4 l prize (b) I rcury i (b) 30 pper is (b) -	n is 14 00kg. To what m for synthesizin Hardy is 57°C s -38.8°C	(c) t he (c) ng at (c)	18 eight it would b 5m mmonia? Harbour -183°C	(d) 19 De raised so that its (d) 7m (d) Haber (d) 100°C		

105.	Expansion of ART is							
	(a) Arificial Reproductive Technology							
	(b) Assisted Reproductive Technology							
	(c) Animal Reproductive Technology							
	(d) Agressive Reproductive Technology							
106.	Galilean Telescope was designed in							
	(a) 1509 (b) 1559 (c) 1609 (d) 1619							
107.	The type of lens used in a simple microscope is							
	(a) Binocular lens (b) plano concave lens							
	(c) convex lens (d) concave convex lens							
108.	Centripetal force is given by							
	(a) $F = ma$ (b) $F = \frac{mv^2}{r}$ (c) $F = \frac{gv^2}{r}$ (d)none of these							
109.	"Among the orbitals of same energy, electron do not start pairing until all these							
	bitals singly occupied." This rule was given by,							
) Fredrich Hund (b) Paulis (c) Vander wall (d) Aufbau							
110.	Value of universal gravitational constant G=							
	(a) $6.57 \times 10^{-11} \text{ Nm}^2/\text{kg}^2$ (b) $6.76 \times 10^{-11} \text{ Nm}^2/\text{kg}^2$							
	(c) $6.67 \times 10^{-11} \text{ Nm}^2/\text{kg}^2$ (d) $6.78 \times 10^{-11} \text{ Nm}^2/\text{kg}^2$							
111.	LASER stands for							
	a. Light Amplification by Stim <mark>ula</mark> ted Emission of Radiation							
	b. Light and stimulated emitted radiation							
	c. Long & Short extra radiation							
	d. None of these							
112.	Four resistors 5 Ω , 6 Ω , 4 Ω & 8 Ω are connected in parallel. The equivalent							
	resistance is							
	a. $\frac{89}{120}$ b. $\frac{120}{89}$ c. $\frac{130}{99}$ d. $\frac{99}{130}$							
	120 b. 89 c. 99 130							
113.	Which of the following radio isotopes is used in the treatment of cancer?							
	a. Radio Sodium b. Uranium – 235 c. Cobalt – 60 d. Radio Iridium							
	200000000000000000000000000000000000000							
114.	What is the age of the earth							
	a. 3.8 billion years b. 3.5 billion years c . 3.7 billion years d.3.9 billion years							

146.The value of 4	$\times 5^3$			
a. 2	b. 12	c. 6	d.0	
147.Circle having e	qual radii are	2	circles	
a. Similar	b. Cong	gruent c. Ec	qual d.C	onjugate
148.According to T	hale's theore	m,		
a. A straigl	nt line drawı	n paralled to	a side of a triang	le, divides the other two
sides pro	portionately			
b. If two an	gles of triang	gles are equa	l then two sides pr	oportional
c. Sum of the	he three angl	es is 180°		
d. Sum of to	wo sides is gı	eater than tl	ne third side	
149.Total surface a	rea of a cylir	nder with ba	se radius as 5cm a	and h <mark>eig</mark> ht 6cm in square
centi meters				
a. 100π	b. 12	0π	c. 130π	d. 110π
150.Euler's formula	states that			
a. N+R=2+A	b. N	+A=2R	c. N-A=2+R	d.N+R=2-A